vista.algorithms.background_removal.robust_pca.run_robust_pca¶
- vista.algorithms.background_removal.robust_pca.run_robust_pca(images, lambda_param=None, tol=1e-07, max_iter=1000, callback=None)[source]¶
Apply Robust PCA background subtraction to a 3D array of images.
- Parameters:
images (ndarray) – 3D numpy array (num_frames, height, width) containing image data
lambda_param (float, optional) – Sparsity parameter, by default auto = 1/sqrt(max(m,n))
tol (float, optional) – Convergence tolerance, by default 1e-7
max_iter (int, optional) – Maximum iterations, by default 1000
callback (callable, optional) – Optional callback function called after each iteration. Called with (iteration, max_iter, rel_error). Should return False to cancel processing.
- Returns:
(background_images, foreground_images) where:
background_images: Low-rank background component (same shape as input)
foreground_images: Sparse foreground component (same shape as input)
- Return type:
tuple of (ndarray, ndarray)